
1/22

Laura Mo Team Lead

Colan Biemer Programming Lead

Gabby Getz Programmer

Shreya Patel Programmer

Jasmine Marcial Programmer

Alliy Frauenpreis Programmer(Assistant Shadow)

Jeff Salvage, CCI Advisor Dr. Frank Lee, Stakeholder & DIGM Advisor

Matt Bodner DIGM lead

Dave Petersen Artist

Michael Rodriguez Artist

Keano Jan Osmillo Artist

Andrew Mylet Artist

Joseph Santos Artist 2/22

Project Motivation

3/22

A roguelike survival game
HIghwater is

4/22

Survival
Manage health, warmth, and hunger

Permanent death

Procedural Cityscape
Different environment every playthrough

5/22

Intuitive Crafting System
Multipurpose and
dynamic items

Simulated Weather
Realistic weather system the player can predict
City slowly filling with water

Discoverable Story
Integrated into the environment

and radio system

Weather System Comparisons

6/22

Pressure Systems AND weather

7/22

Weather System

Sea Level Pressure to Wind
Speed

Wind Speed Direction
Compared to Pressure Centers

Relative Humidity from
Pressure and Temperature

8/22

Sampling point generation

9/22

Poisson Sample Point Generation Item Placement

Procedural City Generation

10/22

Voronoi Diagram with seed
points created with Poisson

Distribution to generate
districts and city edges.

Voronoi Diagram with
regularly spaced seed points to

create city blocks.

Generate building meshes and
pack buildings onto edges of

each block

11/22

Advert City
VoxelStorm

2015

Comparisons
Also block-based city layouts

Buildings are voxel which are
more easily managed in memory

Subversion
Introversion Software
(Unreleased)

City Optimization
Load city buildings in chunks

Creature and item pools

Hide buildings with fog to save on
rendering complex meshes in
distance

Unity Profiler

12/22

Architectural Diagram 13/22

50,000 FT VIEW

Item Crafting

14/22

Config
Files

Event Manager

15/22

16/22

Development Pipeline

17/22

Software &
Game

Development
Standards

Game Performance
Run at 60 FPS on machine with
recommended requirements

XML Documented
All code required standard C# XML
documentation for public methods
and members

Coding Style
Followed Microsoft C# Coding
Conventions as well as own Style
Guide

Unity Best Practices
Proper asset naming, project settings,
and directory structure, use of prefabs

Designer Friendly
All values were exposed to be

changed by designers through Unity
and configuration files

GOF Design Patterns
Including Bridge, Controller,

Decorator, Factory, Observers,
Singleton, etc.

Playtesting
Qualitative game testing in addition

to software tests

Dynamic UI
Scalable, responsive, and user

tested

18/22

Testing
NUNIT & UNITY TEST TOOLS

NUnit Framework 2.6 for backend
code tests

Qualitative testing done through
playtesting in tandem with the
DIGM Team

Continuous Integration
UNIT TESTING & UNITY CLOUD BUILD

19/22

20/22

23,219
lines of code

368
closed pull requests

1041
lines of unit tests

Statistics

422
closed issues

46
play-tests

21/22

http://www.youtube.com/watch?v=r3lKHoFxHIk

THANK YOU!

22/22

